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Statistical analysis is universally used in the interpretation of the results of basic biomedical research, being expected by
referees and readers alike. Its role in helping researchers to make reliable inference from their work and its contribution to the
scientific process cannot be doubted, but can be improved. There is a widespread and pervasive misunderstanding of P-values
that limits their utility as a guide to inference, and a change in the manner in which P-values are specified and interpreted will
lead to improved outcomes. This paper explains the distinction between Fisher’s P-values, which are local indices of evidence
against the null hypothesis in the results of a particular experiment, and Neyman–Pearson a levels, which are global rates
of false positive errors from unrelated experiments taken as an aggregate. The vast majority of papers published in
pharmacological journals specify P-values, either as exact-values or as being less than a value (usually 0.05), but they are
interpreted in a hybrid manner that detracts from their Fisherian role as indices of evidence without gaining the control of
false positive and false negative error rate offered by a strict Neyman–Pearson approach. An informed choice between those
approaches offers substantial advantages to the users of statistical tests over the current accidental hybrid approach.

LINKED ARTICLES
A collection of articles on statistics as applied to pharmacology can be found at
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1476-5381/homepage/statistical_reporting.htm
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Introduction
When I first started to prepare papers for the series Good
Statistical Practice in Pharmacology, I had in mind that I would
take up the cudgel for a few of my personal hobby horses and
thus help to ‘polish’ the practice of statistics in this field (Lew,
2007a,b; 2008). (The editorial accompanying the first paper
mentioned a few of that particular editor’s hobby horses.)
Since then, an excellent series of editorial papers about sta-
tistical practices by Drummond, Tom and Vowler has started
to appear simultaneously in this journal and several others
(Drummond and Vowler, 2011; Drummond and Tom, 2011a;
2011b; 2012). Those papers, like my own, attempt to clarify
and correct many statistical and data presentation issues,
mostly using invented case studies designed to favour acces-
sibility over complete technical accuracy. It now seems that I
was quite naïve in my estimation of what is needed – we need

reformation rather than polish. Better choices of statistical
test and graphical presentation by researchers will not fix a
pervasive and fundamental flaw in the use of statistics for
inferential support in pharmacological research – the nub of
the problem is in the way that P-values are used, not how
they are generated. (The ‘P’ in P-value is sometimes capital-
ized, sometimes not, sometimes italicized, sometimes not.
Fisher (1925) used P in Statisitical Methods for Research Workers
and so I will do the same (not that I’ve been consistent in the
past . . .). The BJP uses P, so the author’s choice has been pre-
empted; Ed)

Many previous papers pointing to problems relating to
misuse and misinterpretation of P-values (Cumming, 2008;
Goodman, 1999a,b; Wagenmakers, 2007; Panagiotakos,
2008), so the notion is not particularly novel. However, those
papers have been published where they are unlikely to be
seen by many basic pharmacologists and the suggested
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solutions – solutions that include discarding P-values entirely
– seem to me to be better suited to the statistically adept than
to basic researchers. In this paper, I will argue that relatively
simple changes to the way that we interpret and report
P-values will give us substantial benefit with far less disrup-
tion. To accomplish such a change, we need to understand
better what P-values are and are not, and we need to utilize a
much more scientific approach to inference than that which
is evident in our publications. To support such reform, this
paper contains a set of questions that will convince many
readers that they do not fully understand P-values, an
in-depth account of the rival approaches to inference that
were developed by Fisher and by Neyman and Pearson, evi-
dence and argument that the predominant approach pre-
sented in pharmacological papers is an accidental hybrid of
those methods, an attempt to explain the genesis of the
hybrid, and, finally, a set of recommended changes to
common practice.

(It is quite likely that the inferential methods actually
employed by some pharmacologists is richer than that pre-
sented in their papers, so the problem is sometimes one of
style rather than substance, and readers may take comfort in
the notion that the problems addressed in this paper are not
in any way restricted to the discipline of pharmacology.)

You probably don’t know the
significance of P

P-values are the standard currency of presentation of the
results of statistical analyses – almost all 59 papers in the
January 2008 issues of the British Journal of Pharmacology (BJP)
and Journal of Pharmacology and Experimental Therapeutics
(JPET) reported P-values in their data summaries. Given the
near-universal role of P-values in the reporting of results of
pharmacological experiments, it would be reasonable to
expect that pharmacologists have a firm grasp on the
meaning of a P-value. However reasonable such an assump-
tion might be, it is wrong.

Test your own understanding with the following ques-
tions which have been used to explore confusion about
P-values (Haller and Krauss, 2002).

Which of the following things does a report of P < 0.05
allow you to know? (None, one or more may be true.)

1 The probability that the null hypothesis was true.
2 The probability that the alternative hypothesis was true.
3 The probability that the observed effect was real.
4 The probability that a claim of a positive result is a false

positive claim.
5 The probability that the result can be replicated.
6 The strength of evidence in the data against the null

hypothesis.

Stop! Don’t read on until you have fully considered each
option.

None of the options is entirely true, and most are com-
pletely wrong, as is explained in the Appendix. If you were
mistaken on one or more, or simply uncertain, then fear not,
you are probably with the majority – the questions above
come from a study that found nearly everyone made at least

one error, and statistics instructors were nearly as likely to
answer wrongly as their students (Haller and Krauss, 2002).
The widespread confusion seems to result from inconsisten-
cies in the teaching of statistics, from the widespread adop-
tion of an incoherent mixture of different approaches, and
from a poor match between theoretical paradigms of infer-
ential statistics and scientific practice. That sentence makes
some strong claims, but I will provide evidence for each. First,
however, we need to set out exactly what a P-value is, along
with the various meanings of ‘significant’.

What is P and why is it significant?

The P-value was promoted by Ronald A. Fisher in his book
Statistical Methods for Research Workers (Fisher, 1925) as an
index of strength of the evidence within observed data
against a null hypothesis, and he introduced the use of the
word ‘significant’ as having a special statistical meaning.
Eight years after the publication of that book, Jerzey Neyman
and Egon Pearson published an alternative approach to sta-
tistical inference utilizing long-term error rates instead of the
strength of evidence (Neyman and Pearson, 1933). They also
decided to use ‘significant’ for a statistical condition, but –
unfortunately – the Neyman–Pearson meaning of significant
is different from Fisher’s.

The predominant approach to P-values and ‘significance’
in BJP and JPET is an accidental mixture of the approaches of
Fisher and Neyman and Pearson. (Use of that hybrid is in no
way restricted to pharmacological papers, and I specify those
journals only because they are most relevant to the readers of
this paper.) To understand the genesis of the hybrid and its
pitfalls, we have to begin with specification of those two
systems. The reader is encouraged to set aside any preconcep-
tions regarding P-values, significance, error rates and hypoth-
esis testing before continuing because, if this paper succeeds
in its aims, most readers will see P and significance differently
by the time they finish reading. In other words, get ready for
some discomfort!

What is a P-value? A full answer to that is complicated. It’s
a probability, but not ‘just’ a probability: it is a probability in
the sense of representing the frequency of a type of event in
an infinite series of trials – a frequentist probability. Not only
that, but it is a conditional frequentist probability. To be spe-
cific, a P-value obtained from an experiment represents the
long-run frequency of obtaining data as extreme as the
observed data, or more extreme, given that the null hypoth-
esis is true. (The word ‘data’ could be substituted with test
statistic or P-value. There is little point in distinguishing
between the three in this context – the test statistic is
designed to be an index of the extremeness of the data and
there is a one-to-one correspondence between the test statis-
tic and the P-value).

Two aspects of that definition of the P-value deserve
emphasis. First, the P-value represents something about the
extremeness (strangeness) of the observed data relative to all
other sets of data, real and merely possible. Second, and most
importantly, the P-value is conditioned on the null hypoth-
esis being true. That conditionality means that the P-value
has nothing at all to say about the probabilities of hypoth-
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eses, nor, importantly, about results that might be (or have
been) obtained when the null hypothesis is false.

Fisher’s significance test
Fisher used the P-value as an index of evidence against the
null hypothesis with this straightforward logic: when the
P-value obtained from an experiment is small, then one has
to assume that either an unusual event has occurred or that
there is something wrong with the conditioning of the prob-
ability. Faulty conditioning would mean that the null
hypothesis is not true. Thus, the smaller the P-value, the less
plausible it would be that the null hypothesis is true. Fisher
called his tests ‘tests of significance’ and interpreted the
P-values as continuous variables indicating the ‘significance’
of the result, with smaller P-values corresponding to stronger
significance. Thus, a P-value of 0.0037 indicates a level of
significance of 0.0037 and casts doubt on the truth of the null
hypothesis in some sort of proportion to that significance.

While the P-value summarizes the evidence within a spe-
cific set of experimental results against the null hypothesis,
Fisher recommended that no P-value should sway a scientific
conclusion without reference to all aspects of the experiment,
and, preferably, replication of the result. In his book, Statis-
tical Methods and Scientific Inference (Fisher, 1990), he said:

On choosing grounds on which a general hypothesis
should be rejected, personal judgement may and should
properly be exercised. (p. 50)

and

. . . no scientific worker has a fixed level of significance
at which from year to year, and in all circumstances, he
rejects hypotheses; he rather gives his mind to each
particular case in the light of his evidence and his ideas.
(p. 45)

and in his book The Design of Experiments (Fisher, 1990):

In order to assert that a natural phenomenon is experi-
mentally demonstrable we need, not an isolated record,
but a reliable method of procedure. In relation to the
test of significance, we may say that a phenomenon is
experimentally demonstrable when we know how to
conduct an experiment that will rarely fail to give us a
statistically significant result. (p. 14)

It is clear that Fisher felt that the P-value was but one
component among many that should be used in the process
of scientific inference. Goodman (1999a) puts it this way:

Fisher suggested that it [the P value] be used as part of
the fluid, non-quantifiable process of drawing conclu-
sions from observations, a process that included com-
bining the P value in some unspecified way with
background information. (p. 997)

To interpret the results of a significance test, one needs to
know the P-value, but relatively few pharmacological
research papers specify P-values (only 6 out of the 59 papers

in BJP and JPET did so). Most often, they are reported as being
less than something, usually 0.05 and occasionally 0.01. That
habit almost certainly began before the widespread availabil-
ity of computers and statistical software, when one had to
estimate P-values from tables of test statistic critical values.
The tables had entries for only a few discrete levels of P and
so it was natural to use the ‘less than’ approach rather than
perform complicated calculations for more exact values.
Nowadays almost everyone uses statistical software that
reports exact P-values, so that particular reason for inexact P
is no longer important. Probably the most important factor in
the prevalence of ‘P < 0.05’ is Neyman-Pearson hypothesis
testing.

Neyman–Pearson hypothesis test
Jerzey Neyman and Egon Pearson devised a coherent frequen-
tist paradigm that avoids aspects of Fisher’s approach that
might be seen as ill-defined. But they did so by discarding the
idea that experimental results can support inference about
the conditions of those individual experiments and replacing
it with consideration of long-term rates of erroneous deci-
sions (Neyman and Pearson, 1933). Their approach is to con-
sider the rate of false positive conclusions that would be
drawn in circumstances where the null hypothesis is true
-type I errors – and false negative conclusions where the null
hypothesis is false – type II errors. (Where a two-tailed statis-
tic is used, there is a third type of error that may be of interest:
a correct positive result but where the apparent effect is in the
wrong direction. I do not know whether Neyman and
Pearson addressed this one) An important aspect of the
Neyman–Pearson approach is that it allows definition, and
thus optimization, of experimental power, as 1- the false
negative error rate.

To apply the Neyman–Pearson method one defines, in
advance of conducting the experiment, the maximum tol-
erable false positive error rate, denoted a, and an alternative
hypothesis. That alternative hypothesis should specify a
particular effect size on the basis of either an expectation, or
that would be scientifically interesting (important, relevant,
or satisfying). Then the sample size needed for a tolerable
false negative error rate, b, is calculated from the alternative
hypothesis, the false positive error rate (often 0.05 by
convention or habit) and the variance of the underlying
population (either known or estimated). Only after these
experimental design features are determined should the
experiment be conducted. (This sequence may be unfamiliar
to many readers as it is rarely, if ever, adhered to or reported
in the basic biomedical scientific literature (Strasak et al.,
2007).) Once the experimental observations are in hand,
the results of the experiment determine the experimenter’s
conclusion on the basis of whether the observed test statis-
tic is larger or smaller than the critical cutoff for the
predetermined false positive error rate (e.g. t = 2.57 for a
two-tailed t-test with 5 degrees of freedom where a is 0.05).
If the test statistic is smaller (i.e. less extreme), then the
experimenter should accept the null hypothesis; if it is
larger, then the null hypothesis is discarded, and the alter-
native hypothesis accepted, a result that is described as ‘sig-
nificant’ – an unfortunate word, given Fisher’s prior and
different usage.

BJPStatistical inference using P-values

British Journal of Pharmacology (2012) 166 1559–1567 1561



Fisher is local, Neyman–Pearson
is global

Significance tests and hypothesis tests
are different
It is easy to think that the two approaches described are
similar, particularly given their shared use of the term ‘sig-
nificant’. However, they operate with very different scope
(Leslie, 1999; Taper and Lele, 2011): the Fisherian approach is
local and Neyman–Pearson approach is global. The results of
a Fisherian significance test give you a probability relating to
the state of the system in which the experiment was done.
Interpretation of the P-value applies to that particular system
and that particular experiment, so it can be used for inductive
reasoning (that is reasoning from the specific towards the
general; deductive reasoning goes from the general to the
specific). In contrast, the error rates of Neyman–Pearson
hypothesis tests relate to each particular experiment only as a
member of a larger set. Interpretation of the results of an
experiment relates to the set rather than the system of the
current experiment. Neyman and Pearson (1933) wrote:

We are inclined to think that as far as a particular
hypothesis is concerned, no test based upon the theory
of probability can by itself provide any valuable evi-
dence of the truth or falsehood of that hypothesis.
But we may look at the purpose of tests from another
view-point. Without hoping to know whether each
separate hypothesis is true or false, we may search for
rules to govern our behaviour with regard to them, in
following which we insure that, in the long run of expe-
rience, we shall not be too often wrong.

These are very important statements. The first directly
deprecates Fisher’s use of P-values for inductive inference,
and probably contributed to the legendary animosity
between Fisher and Neyman. The last sentence is a clear
statement of the core idea of the Neyman–Pearson hypothesis
testing – an approach that Neyman later called a principle of
inductive behavior (Neyman, 1957). The Neyman–Pearson
method eschews any interpretation of the particular experi-
mental results in favour of controlling global long-term error
rates using a strict decision rule that requires us to ‘conclude
in a single instance whatever would prove desirable in the
long run’ (Thompson, 2007).

The practical and scientific differences between the
approaches can be seen in two scenarios:

Example 1: Fisher’s significance test. Consider an experiment
conducted and interpreted using a Fisherian significance test.
Imagine that it is a simple two-tailed t-test with 5 degrees of
freedom and the result is found to be t = 4.09 and thus P =
0.0094. The next step – scientific rather than statistical – is to
decide whether to form and test new hypotheses or to re-test
the original. Assuming that we are not aware of any pre-
existing reason to favor the null hypothesis, and that there
are no relevant experimental data contrary to the current
finding, we might inductively decide that the null hypothesis
is unlikely to be true. P = 0.0094 is fairly convincing evidence
against the null hypothesis, and so we would be inclined to

move on to new hypotheses. If the significance test result had
been less convincing, say, P = 0.048, then we would perhaps
have been inclined to take the re-test path. Likewise, if the
result of P = 0.0094 was surprising in light of previous con-
trary experimental results, because falsehood of the null
hypothesis was in some other way implausible, or because the
consequences of the null hypothesis being false are revolu-
tionary, then we might choose to re-test the hypothesis.
Re-testing would be a re-run of the current experiment or a
newly designed experiment testing the same or very similar
hypothesis. Within this approach, the P-value is only one of
several considerations that might lead to an erroneous deci-
sion to discard the null hypothesis, with the rest being due to
the process of scientific consideration that Goodman called
fluid and non-quantifiable. The P-value might incline the
experimenter towards or away from a false positive assertion,
but it is only one contributor to such an error. The P-value
cannot therefore quantitate a long-term error rate.

Example 2: Neyman and Pearson’s hypothesis test. Now con-
sider a similar experiment analysed with a Neyman–Pearson
hypothesis test with a false positive error rate of 5% and
sample size chosen to yield a false negative error rate of, say,
10% at the predicted effect size. For convenience assume that
the sample size is the same as that in the previous example.
Again the result is t = 4.09: ‘significant’ in the Neyman–
Pearson manner because it is greater than the t = 2.57 cutoff
for a = 0.05, the design false positive error rate. In conform-
ance with the principle of inductive behaviour, we would
discount the null hypothesis and move on to form fresh
hypotheses and design new experiments to test them. That
procedure promises a long-term false positive error rate of
5%. A different result of t = 2.6 (equivalent to the P = 0.048
considered in Example 1) would be treated in exactly the same
way because in a Neyman–Pearson hypothesis test no distinc-
tion is drawn between ‘just significant’ and ‘very significant’
results. There is no option to re-test the same hypothesis
because inductive behaviour imposes a decision to accept or
reject the null hypothesis. Neither is there an opportunity to
incorporate outside evidence into the interpretation of the
result – such evidence may have been used in the design stage
of the experiment (e.g. in the expectation of effect size), or
when the original hypothesis was formed, but after the
experiment, it is irrelevant to the required behaviour of the
experimenter. There is no reason to consider the result from
an evidentiary perspective because the behaviour required is
independent of such considerations (perhaps the experimen-
tal equivalent of mandatory sentencing!).

Many readers will now be thinking that, inductive behav-
iour notwithstanding, a result of t = 4.09 is substantially more
extreme than t = 2.57, and would have been significant even
if the experiment had been intended to have a = 0.01. Can’t
we therefore go beyond the automatic rejection of the null
hypothesis at a = 0.05, to a more ‘significant’ rejection at the
a = 0.01 level? No, we can’t. The long-term false positive error
rate is a global property of the experimental design combined
with inductive behaviour. Unlike the P-value that would be
obtained from a Fisherian significance test, it is not a property
of the local data. The Neyman–Pearson experiment in
Example 2 was designed explicitly to have a = 0.05 and so any
result of t greater than 2.57 would have been accepted as a
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positive result, and the null hypothesis discarded. The
maximal error rate ‘yield’ of the design is 0.05 because the
experimental design held a 1 in 20 chance of resulting in a
false positive outcome if the null hypothesis was true, no
matter how extreme the data turn out to be. Control of the
long-term false positive error rate is achieved at the cost of
precluding any action based on the evidential meaning of the
observed P-value. If you want to control the error rate then
use the Neyman–Pearson method and set a before the experi-
ment; if you want a measure of evidence, then use Fisher’s
approach and interpret the observed P-value after the experi-
ment. You can’t use both.

Which approach is right?
Both, but they come from completely different approaches to
experimentation. They are neither interchangeable nor
equivalent but, because their scopes don’t really intersect,
both can be correct. Instead of declaring one approach right
and the other wrong, we can ask the pragmatic question of
which offers the most utility. It is my opinion that for basic
biomedical researcher, the Fisherian approach offers more
than the Neyman–Pearson approach. Fisher frequently
claimed that the Neyman–Pearson approach was an indus-
trial acceptance procedure rather than a tool for scientific
investigation, and that seems to be a fair criticism. The local
scope of Fisher’s approach is better aligned with the manner
in which basic experimental science is actually done because
we are usually trying to make inferences about this system on
the basis of these results. The decision rules of the Neyman–
Pearson approach is particularly unhelpful for experiments
within a related series testing various aspects of an overarch-
ing scientific hypothesis. Minor discrepancies in the results
could lead to the acceptance of contradictory hypotheses if
the decision rules are applied strictly. The Fisherian signifi-
cance testing approach allows discrepant results to be
weighed more thoughtfully by the experimenter in light of
the overall picture of experimental results and the scientific
hypothesis. For such experiments, local interpretation of the
results should trump consideration of global error rates. [It is
worth noting here that likelihood approaches and Bayesian
analyses are may have even more to offer, but they are
outside the scope of this paper (and the expertise of its
author!).] The decision rules of the Neyman–Pearson
approach should be restricted to experiments which are
intended to yield a decision – experiments like some clinical
trials.

Which approach is most used?
That is a much harder question than it might at first seem.
Publications of basic biomedical research almost never refer
directly to Fisher or to Neyman and Pearson, and so the
question cannot be answered by looking at cited references.
Nor can it be easily answered by looking for the use of
P-values and a levels because it is unusual in the pharmaco-
logical literature to see the actual test statistic values. Results
are instead determined as being significant (or not) from the
corresponding P-value. While explicit statements of the false
positive error rate, a, are rare (only one among the 59 BJP and
JPET papers examined mentioned a), statements about P <
0.05 being considered to be statistically significant abound

(45 out of 59 papers examined contained such a statement).
If the latter statement can be taken as evidence for the use of
the Neyman-Pearson approach, then that that would appear
to be the predominant approach. However, it seems much
more likely that the predominant approach is a hybrid. The
instructions to authors for the JPET include the statement:
‘Statistical probability (p) in tables, figures, and figure legends
should be expressed as *p < 0.05, **p < 0.01, and ***p < 0.001’,
and about half of the JPET papers examined (19/45) com-
plied. The BJP is less prescriptive in its instructions but, none-
theless, half of the papers examined (7/14) indicated multiple
levels of significance. Do those levels of significance reflect a
granular sort of Fisherian significance, or a multi-leveled
Neyman–Pearsonian significance? There is simply not
enough information within the papers to decide. However it
seems quite unlikely that any scientist would choose to use
an a of 0.001 in one experiment and an a of 0.05 in another
experiment within the same study, without at least some
mention of some reason for extra caution in the former case.
The presence of several levels of significance can be taken
as evidence for a deviation from the Neyman–Pearson
approach. Similarly, optimal consideration of evidence
requires more than three levels of P, and so most of the papers
deviate from Fisher’s approach as well. What we have is a
hybrid approach that neither controls error rates nor allows
assessment of the strength of evidence. Worse, the automatic
decision rule influence in the hybrid weakens adherence to
Fisher’s suggestion that results be interpreted in conjunction
with other evidence and prior expectations. Goodman
explains the scientific cost of the use of a hybrid method in
place of Fisher’s:

Such features as biological plausibility, the cogency of
the theory being tested, and the strength of previous
results all become mere side issues of unclear relevance.
(Goodman, 1999a)

If that is true, then it can be claimed that statistical confusion
is significantly reducing the quality of scientific inference.

The critical importance of considering factors outside the
experimental data when dealing with scientific hypotheses
can be seen in the classical example of Laplace’s ‘Constanti-
nople’ thought experiment (Laplace, 1814). I paraphrase it
thus:

Imagine coming across printed characters on a table
arranged in this order: C O N S T A N T I N O P L E. You
would not likely think that the arrangement was a
matter of random chance, despite the fact that any
arrangement of 14 letters is as likely as any other.
Knowing that the word Constantinople is used in stan-
dard language would naturally lead you to conclude that
it is incomparably more likely that the letters were
arranged by a person than by chance alone.

That is an example where a strictly frequentist statistical
analysis of the data would yield little of value. If we habitu-
ally use a rigid cutoff of significance as the main factor in
evaluation of our hypotheses then we are cutting ourselves
off from other relevant information that can be just as
important.
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How did we get here?
If Fisher’s approach is well matched to the needs of basic
researchers, then why has the Neyman–Pearson approach
become so influential? One possible reason is that its deci-
sion rule is easy to explain and sounds very objective. It can
be written out as a simple and complete recipe that doesn’t
end with anything like ‘season to taste’. Its definiteness
may be reassuring to the many pharmacologists who feel
vaguely uncomfortable with interpretation of statistical
analyses.

Textbooks of applied statistics often actively promote the
use of hybrid testing. For example, the textbook from which
I learned applied statistics, Statistical Methods by Snedecor and
Cochrane (Snedecor and Cochrane, 1989), has a chapter
called Tests of Hypotheses that starts by conflating Neyman–
Pearson hypothesis tests with Fisherian significance tests: ‘A
tool widely used in statistical analysis is a test of hypothesis,
also called a test of significance’. The chapter then goes on to
describe type I and type II errors and an approach where a
result more extreme than a predetermined critical value
results in rejection of the null hypothesis. In the next
chapter, however, they report the results of two cases of t-tests
thus:

The observed mean difference just reaches the 5% level
[of significance], so the data point to a superiority of the
new treatment.
In Case II, t = 10.28/0.540 = 19.04. This value lies far
beyond even the 0.1% level (5.405) in table A4. We
might report ‘P < 0.001.’ (Snedecor and Cochrane, 1989,
p. 86)

That is an open invitation to choose the significance
cutoff after the results are determined, something that pre-
vents control of the long-term type I error rate. The signifi-
cance testing and hypothesis testing hybrid is presented
without any mention of the originators, their incompatibili-
ties or the controversy.

Some textbooks actually define P-values in terms of error
rates or a levels. For example, Rosner (Rosner, 1990) provides
this definition:

Definition 7.10 The p-value for any hypothesis test is the
a level at which we would be indifferent to accepting or
rejecting H0 given the sample data at hand. That is, the
p-value is the a-level at which the given value of the
statistic (such as x) would be on the borderline between
the acceptance and rejection regions.

One page later, they give an alternative, seemingly subsidiary,
definition:

Definition 7.11 The p-value can also be thought of as the
probability of obtaining a result as extreme or more
extreme than the actual sample value obtained given
that the null hypothesis is true.

No explanation is given for the discrepancy between those
definitions and no mention is made in that context of the
contradictory ideas of Fisher and Neyman and Pearson

regarding statistical testing. It is not surprising, given those
failings in textbooks, that many pharmacologists are ignorant
of the issues raised in this paper.

Of course, I don’t imagine that all statistics textbooks are
deficient in this regard. While none in my personal library
explicitly explains the problem of hybrid significance-
hypothesis tests, at least one statistics textbook suitable for
basic pharmacologists is quite consistent in presenting Fish-
er’s approach (Colquhoun, 1971). Anyway, pharmacologists
probably pay little attention to statistics textbooks once they
start publishing their research and instead they ‘do as the
Romans do’ and follow the convention. So long as the hybrid
approach predominates among otherwise high-quality
research papers, we cannot expect that the situation will
change.

Why does it matter?
It matters because the misuse and misinterpretation of
P-values hinders the process of scientific inference. In a fully
Neyman–Pearson approach, the automatic acceptance or
rejection of the null hypothesis is the price set by a Faustian
bargain in return for control of long-term error rates. The
hybrid approach imposes an automatic decision rule without
control of the long term error rates and so that bargain
becomes a very bad deal. Likewise, if it is assumed that within
the hybrid approach that the P-value represents the long-
term false positive error rate then erroneous claims will be
much more frequent than expected. Each of the approaches
described in this paper offer advantages over the other and
each is a valid choice of paradigm for statistical analysis, but
the accidental mixture of the two loses the advantages and is
an inappropriate system for interpretation of the results of
scientific experiments.

What you should do
At the very least, you should resist the urge to write any-
thing like ‘Results where P was less than 0.05 were taken as
statistically significant’ in the Methods section of your
papers, unless you really are using the Neyman–Pearson
approach. If you are using that approach, then you should
report the designed power of the test and justify your
choice of a.

The next thing you should do is to consider using Fish-
er’s approach as your default. Unlike clinical trials, basic
pharmacological research commonly involves a series of
related experiments conducted within a framework of
evolving hypotheses. In such circumstances, the evidential
approach using Fisher’s P-values is by far preferable to Ney-
man’s decision rule because it allows results to be weighed
in light of theory, background knowledge and arguments
regarding plausibility and utility. The third thing you
should do is to argue a reasoned case in which P-values play
a role rather than simply appealing to the ‘significance’ of
the results. Of course, any sensible reasoning about the
evidence will include considerations of the size of the
effect, and the P-value is not effect size, so the last thing I
recommend you do is to always specify the effect size,
perhaps using confidence intervals (Cumming and Finch,
2001).
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Appendix: answers to the questions
about P

Now that you’ve read so much about P-values, significance
testing and hypothesis testing, you should return to the ques-
tions about the meaning of P < 0.05. An explanation of each
answer is below.

1. The probability that the null hypothesis
was true
As has been explained above, the P-value represents the con-
ditional probability of observing extreme data given the null
hypothesis. In other words, the P-value is calculated assuming
that the null hypothesis is true – how then could the P-value tell
us the probability that it is true?

If we want to know the probability, in light of the data,
that the null hypothesis is true, then we need the conditional
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probability that the null hypothesis is true given the data.
That can be obtained by way of Bayes’ theorem, which allows
calculation of that probability from the experimental evi-
dence (in the form of a likelihood ratio, or Bayes factor, rather
than a P-value) and the probability of the hypothesis being
true that would be ascribed before the experiment was run.
That last mentioned probability, the prior probability, is com-
monly thought to be a subjective degree of belief type of
probability and has been derided as being inimical to the
scientific method by strict frequentists and by Fisher.
However, priors do not have to be subjective – non-
informative priors are widely used, and priors that are both
objective and informative are possible (Goodman, 2004) –
but Bayesian methods are nonetheless conspicuously absent
from the basic pharmacological literature.

2. The probability that the alternative
hypothesis was true
We can’t know from a P-value the probability of the null
hypothesis, but can we know the probability of truth of an
alternative hypothesis? The answer is ‘not really’, but before
we get to that, I need to point out a problem: we don’t have
an alternative hypothesis! The question specified a P-value,
and from this paper, it should be clear that a Fisherian P-value
comes from an analysis without an explicit alternative
hypothesis. If the analysis was intended to be done as a
Neyman–Pearson hypothesis test, then the results should
have been specified as something like ‘significant (a = 0.05)’,
and the alternative hypothesis mentioned. In my survey of
59 papers in the January 2008 issues of BJP and JPET, only one
paper specified or implied an alternative hypothesis, and
even that was in the unusual context of an equivalence
test. Basic pharmacologists seem not to use alternative
hypotheses.

Say that the result had been specified as significant (a =
0.05) and an alternative hypothesis had been used in the
planning of the experiment, would we then be able to say
something about the probability of the alternative hypothesis
being true? Only by the application of Bayes’ theorem.

3. The probability that the observed effect
was real
This is a type of option that students hate: what is meant by
‘real’? ‘The probability that the observed effect was real’ can
be taken to mean ‘the probability that the null hypothesis is
false’, and then the previous discussions apply. However, we
can also take it to mean ‘the probability that the true effect is
similar to that observed’. That becomes a question about
quantitation of effect size, and presumably a confidence
interval would provide the information from the experiment
in a much more useful form than the P-value (Cumming and
Finch, 2001; du Prel et al., 2009). It is worth noting here that,
on average, the observed effect size is equal to the real effect
size, but the average of observed effects among significant
results are larger because those results are not balanced by
results from experiments where the observed effect is small,
because small observed effects tend not to be significant. The
overestimation of effect size among significant results is most
extreme in experiments with small sample sizes and small
true effect sizes, and it can be very substantial. For an

unpaired Student’s t-test with n = 3 or n = 4, a = 0.05, and a
true effect size equal to the population standard deviation,
the average observed effect size among the significant results
is nearly twice the real effect size.

4. The probability that a claim of a positive
result is a false positive claim
It is natural to suppose that a positive claim resulting from
P < 0.05 would have only a 5% change of being a false
positive claim. However, that is far from true. If we assume
that the P < 0.05 was intended to indicate a = 0.05, then it
would be true to suppose that only 5% of experiments where
the null hypothesis is true would result in a false positive
claim. However, that relates to the long-term average result of
the set of experiments conducted where the null hypothesis
is true, it’s a global rate. However, we are usually interested in
the result of a particular experiment – the local result. What
is the probability that a positive claim based on this particular
significant result is a false positive claim? That cannot be
determined. We would need to consider not just the set of
experiments conducted where the null hypothesis is true, but
also the set of experiments where a significant result is
observed. Then we would further need to know the fraction
of that set that overlaps with the set of experiments where the
null hypothesis is true, and the power of the experiments
where the null hypothesis is false. Without a god-like view-
point, we don’t, and can’t, know either of those things for
any particular experiment. Thus, we can only answer the
question in a general sort of way. With small samples, the
power to detect a true effect is low and few experiments can
be expected to yield a significant result when the null
hypothesis is false. There will still be a 5% false positive error
rate among those where the null hypothesis is true and so if
the null hypothesis is true in a reasonable proportion of
experiments, any particular significant result has a good
chance of being a false positive result. One of my previous
papers contains an example where the false positive error rate
among significant results reaches 36% (Lew, 2008).

5. The probability that your result can be
replicated by you or by others
One might expect that a significant result could be readily
replicated, but that is not the case (Cumming, 2008). The lack
of reproducibility of significance levels can be shown by a
simple computer simulation, where the means of two inde-
pendent groups of normally distributed values (n = 4 per
group) were compared with Student’s t-test. The simulation
was run with a true difference between group means equal to
the standard deviation of the population, and so the observed
P-value of 0.0043 correctly pointed to a difference between
means. The simulation was run nine more times, and the
resulting P-values varied widely, from 0.0008 up to 0.73
(Table A1). The variability of the P-values depends on the
sample size and the true effect size, but it is usually much
greater than most people would expect. Killeen has suggested
that a modified P-value be used, one that is ‘calibrated’ for
reproducibility (Killeen, 2005), and the lack of reproducibility
in P-values is used by Cumming (2008) as an argument
to prefer confidence intervals for reporting the results of
experiments.
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6. The strength of evidence in the data
against the null hypothesis
This is the one statement that is almost true. Well, nearly
almost. It fails because we have only the P < 0.05 that comes
from the hybrid Fisher/Neyman–Pearson approach that pre-
dominates today. If we adopt the a cutoff for significance
approach of Neyman and Pearson to control the long-term
false positive error rate, then we have to forgo using the
P-value in an evidential manner, as discussed above (and see
Goodman, 1999a). If we had an exact P-value, then we would
certainly have an index of the strength of evidence. Smaller
P-values represent stronger evidence against the null hypoth-

esis than larger P-values when they are obtained from equivalent
types of experiments. However, that context of equivalence
includes the types of populations being sampled, the type of
statistical test used, and, at least for some analyses, the
sample sizes. Thus one cannot always say that P = 0.0027
from one experiment offers the same strength of evidence
against the null hypothesis as P = 0.0027 from another (even
in the unlikely case that two experiments would yield the
same P-value; see the previous point). Likelihood functions
may offer more easily compared indices of evidence than
P-values (Royall, 1997), but, like so many things in statistics,
they are controversial.

Table A1
P-values from 10 simulated experiments where the null hypothesis was false

1 2 3 4 5 6 7 8 9 10

P-value 0.0043 0.069 0.093 0.0008 0.0046 0.24 0.73 0.57 0.043 0.11
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